Why machine-information metaphors are bad for science education, part I: biological machines and intelligent design

bacterial flagellum

bacterial flagellum, as often represented in biology education

Genes are often described by biologists using metaphors derived from computational science: they are thought of as carriers of information, as being the equivalent of ‘‘blueprints’’ for the construction of organisms. Likewise, cells are often characterized as ‘‘factories’’ and organisms themselves become analogous to machines. Predictably, modern proponents of Intelligent Design so-called theory, the latest incarnation of creationism, have exploited biologists’ use of the language of information and blueprints to make their spurious case, based on pseudoscientific concepts such as ‘‘irreducible complexity’’ and on flawed analogies between living cells and mechanical factories.

In reality, the living organism = machine analogy was criticized already by David Hume in his Dialogues Concerning Natural Religion. In line with Hume’s criticism, over the past several years a more nuanced and accurate understanding of what genes are and how they operate has emerged, ironically in part from the work of computational scientists who take biology, and in particular developmental biology, more seriously than some biologists seem to do.

My friend and collaborator Maarten Boudry and I have written an article several years ago in which we connect Hume’s original criticism of the living organism = machine analogy with the modern ID movement, and illustrate how the use of misleading and outdated metaphors in science can play into the hands of pseudoscientists. We argued that dropping the blueprint and similar metaphors will improve both the science of biology and its understanding by the general public.

We have discussed this topic twice in the last couple of years, once on the occasion of another paper with Maarten, on why machine metaphors in biology are misleading; more recently because of a paper I wrote about genes as blueprints; the current entry completes the trilogy, so to speak. In part I, here, I will present what Maarten and I had to say about the origin of machine-information metaphors in biology, as well as its questionable use in science education. In part II, next week, I’ll talk about the search for new and better metaphors in science and science education. Interested readers are referred to the original paper for references, as well as for a discussion of the misuse of machine-information metaphors in actual biological research (i.e., not just for educational purposes).

When delving into unknown territory, scientists have often naturally relied on their experiences in more familiar domains to make sense of what they encounter. In the early days of the scientific revolution, mechanical metaphors proved to be a powerful instrument to get a grip on new discoveries about the living world and the universe at large, and we can trace back the emergence of machine metaphors at least to the Middle Ages, when new achievements of technology had a profound cultural influence and captured the collective imagination. Against this background of technological innovation, it is not surprising that the pioneers of anatomy and physiology relied on the metaphor of the animal body as a complicated piece of machinery to make sense of their discoveries. The mechanical language provided a richness of meaning and allowed them to structure the new phenomena in terms of familiar experiences. For example, the image of the human heart as a pump with intricate mechanical components played an important role in William Harvey’s discoveries about blood circulation.

In the course of the 17th century, a new philosophy of nature became prominent that developed a conception of the universe in purely mechanical terms. According to this mechanical philosophy, which was developed by thinkers like Rene` Descartes, Pierre Gassendi and Robert Boyle, the phenomena of nature can be understood purely in terms of mechanical interactions of inert matter. This mechanization of nature proved an important driving force behind the Scientific Revolution, and at the end of the 17th century culminated in Newton’s theory of motion. Newton’s description of planetary orbits following the fixed laws of gravity conveyed an image of a clockwork universe set in motion by an intelligent First Cause. In fact, that was exactly how Newton conceived the universe and its relation to the Creator. For Newton and many of his contemporaries, the importance of the mechanical conception of nature was greater than the mere term ‘metaphor’ would suggest, as the development of mechanistic philosophy was itself largely inspired by religious motivations; indeed, the very employment of machine metaphors invited theological speculation.

In the second part of the 17th century, the mechanical pictures of living organisms and of the cosmos at large converged into an intellectual tradition where theology and science were intimately intertwined: natural theology. The most famous representative of this tradition was William Paley, whose work Natural Theology, of Evidence of Existence and Attributes of the Deity, Collected from the Appearances of Nature (1802) made a deep impression on the young Charles Darwin. As the title of the book makes clear, Paley and the natural theologians conceived of Nature as a complicated machinery of intricate wheels within wheels, in which every organism has its proper place and is adapted to its environment. According to Paley, the contrivance and usefulness of parts exhibited by living organisms attests to the intelligence and providence of a benevolent Creator. This so-called ‘design argument’ already had a long intellectual pedigree, dating back to Plato, Cicero and Thomas Aquinas, but its most famous formulation is found in the first chapter of Natural Theology, in which Paley famously relies on the analogy between living organisms and a pocket watch to support his design inference.

While Darwin was the one who gave the most decisive blow to the design argument by suggesting a natural explanation for adaptive complexity in the living world, many philosophers would agree that David Hume foreshadowed its demise, by exposing several problems with the central analogy. In his Dialogues Concerning Natural Religion (1779), which actually predates Paley’s magnum opus by more than 50 years, we find a discussion of the design argument among Philo, the skeptical character that voices Hume’s ideas, Demea, the orthodox religious believer, and Cleanthes, the advocate of natural theology.

After Cleanthes has set out the design argument in terms foreshadowing Paley’s analogy of the watch, Philo objects that it is dangerous to derive conclusions about the whole of the universe on the basis of a spurious analogy with one of its parts. Given that our experience with design is limited to human artifacts only, we have to proceed with great caution, and it would be presumptuous to take so minute and select a principle as the human mind as the model for the origin of the whole universe. Hume realized that, at least in some cases, appearances of intelligent design can be deceptive.

In contemplating that ‘‘many worlds might have been botched and bungled, throughout an eternity, ere this system was struck out’’, Hume even comes close to Darwin’s crucial insight about the power of natural selection. Although Hume does not deny that we can discern similarities between nature and human artifacts, he warns us that the analogy is also defective in several respects. And if the effects are not sufficiently similar, conclusions about similar causes are premature. To illustrate this, Philo proposes another possible cosmogony on the basis of the analogy between the world and an animal:

“A continual circulation of matter in [the universe] produces no disorder; a continual waste in every part is incessantly repaired: The closest sympathy is perceived throughout the entire system: And each part or member, in performing its proper offices, operates both to its own preservation and to that of the whole. The world, therefore, I infer, is an animal.” (Hume 1779, p. 39)

In The Origin of Species, Charles Darwin (1859) finally proposed a natural explanation for the phenomenon that inspired Paley but failed to convince Hume. Although the design argument is still of interest to philosophers and historians of science, it has been widely discarded in the scientific community. However, the analogy on which Paley based his inference seems to be alive and well, not only in the minds of creationists and ID proponents, but also in the writings of science popularizers and educators. Many scientists have actually argued that Paley at least offered an incisive formulation of the problem as there is indeed a hard-to-shake intuition of contrivance and intelligent design in nature. As one of the most ardent defenders and popularizers of evolutionary theory, Richard Dawkins, put it, ‘‘Biology is the study of complicated things that give the appearance of having been designed for a purpose.” Adaptive complexity, then, is still regarded as something that requires a special explanation.

In textbooks, science educators have presented the comparison of living organisms and man-made machines not just as a superficial analogy, but carrying it out to a considerable level of detail. For example, the cell has been described as a miniature factory, complete with assembly lines, messengers, transport vehicles, etc. Consider the following quote from Bruce Alberts, molecular biologist, and former president of the National Academy of Sciences:

“The entire cell can be viewed as a factory that contains an elaborate network of interlocking assembly lines, each of which is composed of a set of large protein machines. … Why do we call the large protein assemblies that underlie cell function protein machines? Precisely because, like machines invented by humans to deal efficiently with the macroscopic world, these protein assemblies contain highly coordinated moving parts. Given the ubiquity of protein machines in biology, we should be seriously attempting a comparative analysis of all of the known machines, with the aim of classifying them into types and deriving some general principles for future analyses. Some of the methodologies that have been derived by the engineers who analyze the machines of our common experience are likely to be relevant.” (Alberts 1998, p. 291)

Creationists and their modern heirs of the Intelligent Design movement have been eager to exploit mechanical metaphors for their own purposes. For example, Bruce Alberts’ description of the living cell as a factory has been approvingly quoted by both Michael Behe and William Dembski, two leading figures in the ID movement. For ID proponents, of course, these are not metaphors at all, but literal descriptions of the living world, arching back to Newton’s conception of the Universe as a clock-like device made by the Creator. The very fact that scientists rely on mechanical analogies to make sense of living systems, while disclaiming any literal interpretation, strengthens creationists in their misconception that scientists are ”blinded” by a naturalistic prejudice. In the creationist textbook Of Pandas and People, which has been proposed by ID advocates as an alternative to standard biology textbooks in high school, we read that ‘‘Intelligent design […] locates the origin of new organisms in an immaterial cause: in a blueprint, a plan, a pattern, devised by an intelligent agent’’ (Davis et al. 1993, p. 14).

The analogy between living organisms and man-made machines has proven a persuasive rhetorical tool of the ID movement. In fact, for all the technical lingo and mathematical “demonstrations,” in much of their public presentations it is clear that ID theorists actually expect the analogies to do the argumentative work for them. In Darwin’s Black Box, Behe takes Alberts’ machine analogy to its extreme, describing the living cell as a complicated factory containing cargo-delivery systems, scanner machines, transportation systems and a library full of blueprints. Here is a typical instance of Behe’s reasoning:

“In the main area [cytoplasm] are many machines and machine parts; nuts, bolts, and wires float freely about. In this section reside many copies of what are called master machines [ribosomes], whose job it is to make other machines. They do this by reading the punch holes in a blueprint [DNA], grabbing nuts, bolts, and other parts that are floating by, and mechanically assembling the machine piece by piece.” (Behe 2006, pp. 104–5)

Behe’s favorite model of biochemical systems is a mechanical mousetrap, the familiar variant consisting of a wooden platform, a metal hammer, a spring etc. According to Behe, if any one of these components is missing, the mousetrap is no longer able to catch mice. He has termed this interlocking of parts ‘‘irreducible complexity’’ and thinks it characterizes typical biochemical systems. n other words, the mousetrap is to Behe what the well-designed pocket watch was for Paley. But whereas Paley can be excused on the grounds of the state of scientific knowledge in the 18th century, for Behe the situation is a little different. Modern biochemistry, nota bene Behe’s own discipline, has revealed that biochemical systems are not like mechanical artifacts at all. Moreover, even biological systems that are irreducibly complex under Behe’s definition pose no problem for evolution by natural selection, as has been in detail by people like cell biologist Ken Miller.

ID proponents have buttressed their analogies between living systems and mechanical contraptions with a lot of visual rhetoric as well. The flagellum of the bacterium E. coli, the hallmark of the ID movement, has been represented as a full-fledged outboard rotary motor, with a stator, drive shaft, fuel supply, etc.. It features on the cover of Dembski’s book No Free Lunch, and has been used numerous times in presentations and online articles. The idea seems to be that if it looks designed, it has to be designed. But as Mark Perakh has documented in a paper published in 2008, ID supporters invariably use idealized and heavily stylized representations of the flagellum, in order to make it more resemble a man-made contraption. Another striking example of this visual rhetoric is a video by Discovery Institute president Stephen C. Meyer, which presents a computer-simulated — and again heavily stylized — journey inside the cell, and describes the biochemical processes in terms of ‘‘digital characters in a machine code,’’ ‘‘information-recognition devices,’’ and ‘‘mechanical assembly lines.’’ Meyer commented that evolutionists will have a hard time now dissuading the public from the fact that ‘‘the evidence for design literally unfolds before them.’’

Of course, the mere observation that creationists have seized on machine metaphors in biology does not suffice to demonstrate that these metaphors do not make scientific sense. However, the fact that they tend to do so systematically, using full-length quotes from respectable scientists, should make us weary of the possible dangers of misleading metaphors. If the rhetoric of the ID movement is demonstrably based on these mechanical analogies, it can be instructive to reexamine their scientific merits. In the paper, Maarten and I argue that the machine-information analogy has indeed influenced the way scientists themselves think about biological structure, function, and evolution. By analyzing the consequences of and reactions to this analogy in actual biological research, we show that its scientific merits are very weak, and that its place in modern biology has become questionable. What then? Stay tuned for part II, on the search for new and better metaphors…

122 thoughts on “Why machine-information metaphors are bad for science education, part I: biological machines and intelligent design

  1. brodix


    “So then we get to saying that genes “created us, body and mind; and their preservation is the ultimate rationale for our existence.””

    As I understand it, what you are arguing against is a reductionist determinism and if so, I fully agree. Among other issues, it goes to whether time is some eternalist block time dimension, along which all events exist and our sense of the present is as subjective as our place in space, rather than a dynamic process, by which change turns potential, to occurring, to residual.

    The problem is that layering effect, where we do get stuck in ruts, because to define is to limit and to limit is to define. So we are constantly creating these maps, metaphors, framing devices, languages, memes, ideologies, etc, so build, connect and communicate. Yet the more precise we try to make them, the more it becomes debates and fights over the exact meanings and it breaks down the very connections they were developed to create.

    Which goes to the point about reality being a dichotomy of energy expanding and form coalescing. Why the future is truly indeterministic, because information is not platonic and requires that medium of energy to exist, so the input into any event cannot be fully known before it happens, because the information cannot travel instantaneously. Therefore the future is not pre-determined.

    Physics, for instance, keeps trying to find the most precise units of reality, yet each layer turns out to be a little fuzzy and so the assumption becomes there must be some smaller level of structure and we have to look at even smaller scales to find it and truly understand reality, but I think that goes more to the nature of information, than reality.

    Without that dynamic manifesting information, it falls into black holes. There is no form in the void.

    Liked by 1 person

Comments are closed.